login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271559
a(n) = G_n(12), where G is the Goodstein function defined in A266201.
7
12, 107, 1065, 15685, 280019, 5764910, 134217867, 3486784574, 100000000211, 3138428376974, 106993205379371, 3937376385699637, 155568095557812625, 6568408355712891083, 295147905179352826375, 14063084452067724991593, 708235345355337676358285, 37589973457545958193356327
OFFSET
0,1
COMMENTS
Goodstein's theorem shows that such sequence converges to zero for any starting value.
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
EXAMPLE
G_1(12) = B_2(12)-1 = B_2(2^(2+1)+2^2)-1 = 3^(3+1)+3^3-1 = 107;
G_2(12) = B_3(3^(3+1)+2*3^2+2*3+2)-1 = 4^(4+1)+2*4^2+2*4+2-1 = 1065;
G_3(12) = B_4(4^(4+1)+2*4^2+2*4+1)-1 = 5^(5+1)+2*5^2+2*5+1-1 = 15685;
G_4(12) = B_5(5^(5+1)+2*5^2+2*5)-1 = 6^(6+1)+2*6^2+2*6-1 = 280019;
G_5(12) = B_6(6^(6+1)+2*6^2+6+5)-1 = 7^(7+1)+2*7^2+7+5-1 = 5764910;
G_6(12) = B_7(7^(7+1)+2*7^2+7+4)-1 = 8^(8+1)+2*8^2+8+4-1 = 134217867;
G_7(12) = B_8(8^(8+1)+2*8^2+8+3)-1 = 9^(9+1)+2*9^2+9+3-1 = 3486784574.
PROG
(PARI) lista(nn) = {print1(a = 12, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A266201: G_n(n).
Sequence in context: A218111 A166755 A230712 * A154671 A321672 A241230
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 11 2016
STATUS
approved