login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271561
a(n) = G_n(14), where G is the Goodstein function defined in A266201.
5
14, 110, 1281, 18750, 326591, 5862840, 134404971, 3487116548, 100000555551, 3138429262496, 106993206736331, 3937376387710451, 155568095560708189, 6568408355716958693, 295147905179358418247, 14063084452067732533983, 708235345355337686361209, 37589973457545958206423881
OFFSET
0,1
LINKS
EXAMPLE
G_1(14) = B_2(14)-1 = B_2(2^(2+1)+2^2+2)-1 = 3^(3+1)+3^3+3-1 = 110;
G_2(14) = B_3(3^(3+1)+3^3+2)-1 = 4^(4+1)+4^4+2-1 = 1281;
G_3(14) = B_4(4^(4+1)+4^4+1)-1 = 5^(5+1)+5^5+1-1 = 18750;
G_4(14) = B_5(5^(5+1)+5^5)-1 = 6^(6+1)+6^6-1 = 326591.
PROG
(PARI) lista(nn) = {print1(a = 14, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A266201: G_n(n).
Sequence in context: A074886 A294445 A036395 * A215868 A244693 A039630
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 13 2016
STATUS
approved