The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271554 a(n) = G_n(7), where G is the Goodstein function defined in A266201. 16
 7, 30, 259, 3127, 46657, 823543, 16777215, 37665879, 77777775, 150051213, 273624711, 475842915, 794655639, 1281445305, 2004318063, 3051893870, 4537630813, 6604718946, 9431578931, 13238000758, 18291957825, 24917131658, 33501182551, 44504801406, 58471578053, 76038721330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Nicholas Matteo, Table of n, a(n) for n = 0..10000 R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41. Wikipedia, Goodstein sequence EXAMPLE G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30; G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 =  4^4 + 4 - 1 = 259; G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127; G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657; G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543; G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215; G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879. PROG (PARI) lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); } CROSSREFS Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A266201: G_n(n). Sequence in context: A180786 A343755 A026653 * A296013 A196338 A196315 Adjacent sequences:  A271551 A271552 A271553 * A271555 A271556 A271557 KEYWORD nonn,fini AUTHOR Natan Arie Consigli, Apr 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 17:04 EDT 2021. Contains 346359 sequences. (Running on oeis4.)