login
A215868
Number of permutations of 0..floor((n*8-2)/2) on odd squares of an nX8 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing
1
1, 14, 110, 3001, 26451, 767560, 6812794, 198409297, 1761748159, 51317680568, 455678075546, 13273519382093, 117863060852067, 3433253982499552, 30485799411892266, 888026282079787049, 7885286478349158743
OFFSET
1,2
COMMENTS
Column 8 of A215870
LINKS
FORMULA
Empirical: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8)
EXAMPLE
Some solutions for n=4
..x..0..x..2..x..4..x..6....x..0..x..1..x..2..x..7....x..0..x..1..x..3..x..5
..1..x..3..x..7..x..9..x....3..x..4..x..5..x..8..x....2..x..4..x..8..x..9..x
..x..5..x..8..x.10..x.13....x..6..x.10..x.11..x.12....x..6..x.10..x.12..x.14
.11..x.12..x.14..x.15..x....9..x.13..x.14..x.15..x....7..x.11..x.13..x.15..x
CROSSREFS
Sequence in context: A294445 A036395 A271561 * A244693 A039630 A234800
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 25 2012
STATUS
approved