login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215866
Number of permutations of 0..floor((n*6-2)/2) on odd squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.
2
1, 5, 12, 78, 189, 1233, 2988, 19494, 47241, 308205, 746892, 4872798, 11808549, 77040153, 186696108, 1218024054, 2951712081, 19257264405, 46667304972, 304462158318, 737821743309, 4813622739873, 11665145978028, 76104577363014
OFFSET
1,2
COMMENTS
Column 6 of A215870.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-2) -3*a(n-4).
Empirical: g.f.: -x*(x-1)*(2*x^2+6*x+1) / ( 1-16*x^2+3*x^4 ). - R. J. Mathar, Nov 27 2015
EXAMPLE
Some solutions for n=4:
..x..0..x..1..x..4....x..0..x..2..x..3....x..0..x..2..x..3....x..0..x..2..x..3
..2..x..3..x..5..x....1..x..4..x..6..x....1..x..4..x..7..x....1..x..4..x..6..x
..x..6..x..8..x.10....x..5..x..8..x..9....x..5..x..8..x..9....x..5..x..7..x..8
..7..x..9..x.11..x....7..x.10..x.11..x....6..x.10..x.11..x....9..x.10..x.11..x
CROSSREFS
Sequence in context: A202203 A074245 A235939 * A219288 A377250 A368074
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 25 2012
STATUS
approved