login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377250
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)) such that [x^(2*n-1)] A(x)^n = 0 for n >= 2, with A(0) = A'(0) = 1.
2
1, 1, 1, -1, -5, 12, 81, -293, -2361, 11365, 104562, -630172, -6493832, 47143346, 538611615, -4581889465, -57623005154, 562546009728, 7739224455922, -85309456282000, -1276419913050610, 15682410921426105, 253801993058469530, -3439337745753797445, -59903911856917937325, 887628418264985947932
OFFSET
0,5
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1.a) A(x) = 1/A(-x*A(x)),
(1.b) A(x) = (-1/x) * Series_Reversion(-x*A(x)),
(1.c) A(x) = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^(n+1) / (n+1),
(1.d) A(x)^m = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^(n+m) * m/(n+m) for |m| > 0,
(1.e) A(x) = exp( Sum_{n>=1} (-x)^n * [x^n] 1/A(x)^n / n ).
(2.a) [x^(2*n-1)] A(x)^n = 0 for n >= 2,
(2.b) [x^(2*n)] 1/A(x)^n = 0 for n >= 1,
(2.c) [x^(2*n-1)] 1/A(x)^(3*n-1) = 0 for n >= 2.
A related power series B(x) may be defined by:
(3.a) A(x) = B( x/A(x) )
(3.b) A(x) = 1 / B( -x*A(x)^2 ),
(3.c) B(x) = A( x*B(x) ),
(3.d) B(x) = 1 / A( -x*B(x)^2 ),
(3.e) B(x) = (1/x) * Series_Reversion(x/A(x)),
(3.f) B(x) = ( (-1/x) * Series_Reversion(-x*A(x)^2) )^(1/2),
(3.g) B(x) = Sum_{n>=0} x^n * [x^n] A(x)^(n+1) / (n+1),
(3.h) B(x) = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^(2*n+1) / (2*n+1),
(3.i) B(x) = exp( Sum_{n>=1} x^n * [x^n] A(x)^n / n ),
(3.j) B(x) = exp( Sum_{n>=1} (-x)^n * [x^n] 1/A(x)^(2*n) / (2*n) ).
A related power series C(x) may be defined by:
(4.a) A(x) = C( x/A(x)^2 ),
(4.b) A(x) = 1 / C( -x*A(x)^3 ),
(4.c) C(x) = A( x*C(x)^2 ),
(4.d) C(x) = 1 / A( -x*C(x)^3 ),
(4.e) C(x) = ( (1/x) * Series_Reversion(x/A(x)^2) )^(1/2),
(4.f) C(x) = ( (-1/x) * Series_Reversion(-x*A(x)^3) )^(1/3),
(4.g) C(x) = Sum_{n>=0} x^n * [x^n] A(x)^(2*n+1) / (2*n+1),
(4.h) C(x) = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^(3*n+1) / (3*n+1),
(4.i) C(x) = exp( Sum_{n>=1} x^n * [x^n] A(x)^(2*n) / (2*n) ),
(4.j) C(x) = exp( Sum_{n>=1} (-x)^n * [x^n] 1/A(x)^(3*n) / (3*n) ).
For fixed integer k, there exists a power series F(x,k) that satisfies:
(5.a) A(x) = F( x/A(x)^k, k),
(5.b) A(x) = 1 / F( -x*A(x)^(k+1), k),
(5.c) F(x,k) = A( x*F(x,k)^k ),
(5.d) F(x,k) = 1 / A( -x*F(x,k)^(k+1) ),
(5.e) F(x,k) = ( (1/x) * Series_Reversion(x/A(x)^k) )^(1/k),
(5.f) F(x,k) = ( (-1/x) * Series_Reversion(-x*A(x)^(k+1)) )^(1/(k+1)),
(5.g) F(x,k) = Sum_{n>=0} x^n * [x^n] A(x)^(k*n+1) / (k*n+1),
(5.h) F(x,k) = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^((k+1)*n+1) / ((k+1)*n+1),
(5.i) F(x,k)^m = Sum_{n>=0} x^n * [x^n] A(x)^(k*n+m) * m/(k*n+m) for |m| > 0,
(5.j) F(x,k)^m = Sum_{n>=0} (-x)^n * [x^n] 1/A(x)^((k+1)*n+m) * m/((k+1)*n+m) for |m| > 0,
(5.k) F(x,k) = exp( Sum_{n>=1} x^n * [x^n] A(x)^(k*n) / (k*n) ),
(5.l) F(x,k) = exp( Sum_{n>=1} (-x)^n * [x^n] 1/A(x)^((k+1)*n) / ((k+1)*n) ).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 - x^3 - 5*x^4 + 12*x^5 + 81*x^6 - 293*x^7 - 2361*x^8 + 11365*x^9 + 104562*x^10 - 630172*x^11 - 6493832*x^12 + ...
RELATED SERIES.
A related power series B(x) = A(x*B(x)) begins
B(x) = 1 + x + 2*x^2 + 3*x^3 - 7*x^5 + 52*x^6 + 247*x^7 - 1560*x^8 - 9715*x^9 + 73924*x^10 + 554683*x^11 + ...
where A(x) = B(x/A(x)) and A(x) = 1/B(-x*A(x)^2).
B(x)^2 = (-1/x)*Series_Reversion(-x*A(x)^2) = 1 + 2*x + 5*x^2 + 10*x^3 + 10*x^4 - 2*x^5 + 99*x^6 + 570*x^7 - 2460*x^8 + ...
where B(x) = 1/A(-x*B(x)^2).
A related power series C(x) = A(x*C(x)^2) begins
C(x) = 1 + x + 3*x^2 + 10*x^3 + 33*x^4 + 114*x^5 + 468*x^6 + 2145*x^7 + 8445*x^8 + 24618*x^9 + 111930*x^10 + ...
where A(x) = C(x/A(x)^2) and A(x) = 1/C(-x*A(x)^3).
C(x)^2 = (1/x)*Series_Reversion(x/A(x)^2) = 1 + 2*x + 7*x^2 + 26*x^3 + 95*x^4 + 354*x^5 + 1462*x^6 + 6570*x^7 + 27357*x^8 + ...
C(x)^3 = (-1/x)*Series_Reversion(-x*A(x)^3) = 1 + 3*x + 12*x^2 + 49*x^3 + 195*x^4 + 777*x^5 + 3288*x^6 + 14781*x^7 + 63963*x^8 + ...
where C(x) = 1/A(-x*C(x)^3).
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins
A^1: [1, 1, 1, -1, -5, 12, 81, -293, -2361, 11365, ...];
A^2: [1, 2, 3, 0, -11, 12, 177, -390, -5145, 17140, ...];
A^3: [1, 3, 6, 4, -15, 0, 268, -285, -8019, 17000, ...];
A^4: [1, 4, 10, 12, -13, -20, 336, 0, -10667, 11096, ...];
A^5: [1, 5, 15, 25, 0, -39, 370, 420, -12825, 0, ...];
A^6: [1, 6, 21, 44, 30, -42, 372, 918, -14307,-15390, 711480, 0, ...];
A^7: [1, 7, 28, 70, 84, -7, 364, 1443, -15015,-33971, 791210, 830060, -53403077, 0, ...]; ...
in which zeros are found at [x^(2*n-1)] A(x)^n for n >= 2.
The table of coefficients of x^k in 1/A(x)^n begins
1/A^1: [1, -1, 0, 2, 2, -21, -48, 455, 1626, -16146, ...];
1/A^2: [1, -2, 1, 4, 0, -46, -50, 1014, 2262, -35820, ...];
1/A^3: [1, -3, 3, 5, -6, -69, 0, 1602, 1740, -57409, ...];
1/A^4: [1, -4, 6, 4, -15, -84, 100, 2136, 0, -79060, ...];
1/A^5: [1, -5, 10, 0, -25, -86, 240, 2535, -2900, -98825, 0, ...];
1/A^6: [1, -6, 15, -8, -33, -72, 403, 2730, -6786,-114818, 126585, 6327630, 0, ...]; ...
in which zeros are found at [x^(2*n)] 1/A(x)^n for n >= 1.
Notice that the main diagonal of this table equals (-1)^n*(n+1)*a(n):
[1, -2, 3, 4, -25, -72, ...] = [1, -2*(1), 3*(1), -4*(-1), 5*(-5), -6*(12), ...];
that is, a(n) = (-1)^n * [x^n] 1/A(x)^(n+1)/(n+1) for n >= 0.
PROG
(PARI) \\ Using [x^(2*n-1)] A(x)^n = 0 and [x^(2*n)] 1/A(x)^n = 0
{a(n) = my(A=[1, 1]); for(m=1, n, A=concat(A, 0);
A[#A] = (1/(-(-1)^m*(m\2+1)))*polcoeff( Ser(A)^((-1)^m*(m\2+1)), m+1); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A377251.
Sequence in context: A235939 A215866 A219288 * A368074 A064371 A249478
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 21 2024
STATUS
approved