login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377249
G.f. A(x) satisfies 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.
1
1, 3, 5, 11, 20, 38, 67, 119, 211, 398, 830, 1940, 4902, 12784, 33165, 84136, 207240, 495964, 1157767, 2654461, 6029627, 13704225, 31463620, 73498385, 175220708, 425631952, 1048102141, 2599306042, 6453178098, 15967452038, 39281184601, 96019973309, 233425343306, 565413231173
OFFSET
1,2
COMMENTS
a(n+1)/a(n) tends to 2.55118... - Vaclav Kotesovec, Nov 14 2024
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.
(2) 1 - x = Sum_{n=-oo..+oo} x^(2*n^2)/(1 - x^(2*n)*A(x))^n.
(3) 1 - x = Sum_{n=-oo..+oo} x^(2*n) * (x^(2*n) + A(x))^(n-1).
(4) 1 - x = Sum_{n=-oo..+oo} x^(2*n^2)/(1 + x^(2*n)*A(x))^(n+1).
(5) 0 = Sum_{n=-oo..+oo} (-1)^n * (x^(2*n) - A(x))^(n-1).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 5*x^3 + 11*x^4 + 20*x^5 + 38*x^6 + 67*x^7 + 119*x^8 + 211*x^9 + 398*x^10 + 830*x^11 + 1940*x^12 + ...
RELATED SERIES.
Let A = A(x), then 1 - x = P + Q where
P = 1 + (x^2 - A) + (x^4 - A)^2 + (x^6 - A)^3 + (x^8 - A)^4 + (x^10 - A)^5 + (x^12 - A)^6 + ... + (x^(2*n) - A)^n + ...
Q = x^2/(1 - x^2*A) + x^8/(1 - x^4*A)^2 + x^18/(1 - x^6*A)^3 + x^32/(1 - x^8*A)^4 + x^50/(1 - x^10*A)^5 + ... + x^(2*n^2)/(1 - x^(2*n)*A)^n + ...
Explicitly,
P = 1 - x - x^2 - x^5 - 3*x^6 - 5*x^7 - 13*x^8 - 26*x^9 - 57*x^10 - 120*x^11 - 259*x^12 - 561*x^13 - 1238*x^14 - 2780*x^15 + ...
Q = x^2 + x^5 + 3*x^6 + 5*x^7 + 13*x^8 + 26*x^9 + 57*x^10 + 120*x^11 + 259*x^12 + 561*x^13 + 1238*x^14 + 2780*x^15 + ...
SPECIFIC VALUES.
A(t) = 1 at t = 0.31160833954190659544044203165981407225865730702613...
notice that Sum_{n=-oo..+oo} (t^(2*n) - 1)^n = 3/2 - t, which deviates from 1 - t; this is due to the term (t^(2*n) - 1)^n taking on the indeterminate form 0^0 at n = 0.
A(t) = 3/4 at t = 0.27771666015004017042369933635782020387857285503045...
where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 3/4)^n.
A(t) = 2/3 at t = 0.26361225583793268826267306259869479301133547781221...
where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 2/3)^n.
A(t) = 1/2 at t = 0.22935306806508598431890965331979164445097661571539...
where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/2)^n.
A(t) = 1/3 at t = 0.18321842757370009004270801439324522647367156844515...
where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/3)^n.
A(t) = 1/4 at t = 0.15319590401223075722696025027321147967336641684269...
where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/4)^n.
A(1/4) = 0.59500579234891734482663421150554161897595924474890...
where 3/4 = Sum_{n=-oo..+oo} (1/4^(2*n) - A(1/4))^n.
A(1/5) = 0.38777623383308495901886663021576078479818829432566...
where 4/5 = Sum_{n=-oo..+oo} (1/5^(2*n) - A(1/5))^n.
PROG
(PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A=concat(A, 0); Ax = Ser(A);
A[#A] = polcoef(-(1-x) + sum(n=-#A, #A, (x^(2*n) - Ax)^n ), #A-1) ); A[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A328660 A058932 A118037 * A094588 A299027 A339006
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2024
STATUS
approved