login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.
1

%I #13 Nov 14 2024 11:46:03

%S 1,3,5,11,20,38,67,119,211,398,830,1940,4902,12784,33165,84136,207240,

%T 495964,1157767,2654461,6029627,13704225,31463620,73498385,175220708,

%U 425631952,1048102141,2599306042,6453178098,15967452038,39281184601,96019973309,233425343306,565413231173

%N G.f. A(x) satisfies 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.

%C a(n+1)/a(n) tends to 2.55118... - _Vaclav Kotesovec_, Nov 14 2024

%H Paul D. Hanna, <a href="/A377249/b377249.txt">Table of n, a(n) for n = 1..502</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) 1 - x = Sum_{n=-oo..+oo} (x^(2*n) - A(x))^n.

%F (2) 1 - x = Sum_{n=-oo..+oo} x^(2*n^2)/(1 - x^(2*n)*A(x))^n.

%F (3) 1 - x = Sum_{n=-oo..+oo} x^(2*n) * (x^(2*n) + A(x))^(n-1).

%F (4) 1 - x = Sum_{n=-oo..+oo} x^(2*n^2)/(1 + x^(2*n)*A(x))^(n+1).

%F (5) 0 = Sum_{n=-oo..+oo} (-1)^n * (x^(2*n) - A(x))^(n-1).

%e G.f.: A(x) = x + 3*x^2 + 5*x^3 + 11*x^4 + 20*x^5 + 38*x^6 + 67*x^7 + 119*x^8 + 211*x^9 + 398*x^10 + 830*x^11 + 1940*x^12 + ...

%e RELATED SERIES.

%e Let A = A(x), then 1 - x = P + Q where

%e P = 1 + (x^2 - A) + (x^4 - A)^2 + (x^6 - A)^3 + (x^8 - A)^4 + (x^10 - A)^5 + (x^12 - A)^6 + ... + (x^(2*n) - A)^n + ...

%e Q = x^2/(1 - x^2*A) + x^8/(1 - x^4*A)^2 + x^18/(1 - x^6*A)^3 + x^32/(1 - x^8*A)^4 + x^50/(1 - x^10*A)^5 + ... + x^(2*n^2)/(1 - x^(2*n)*A)^n + ...

%e Explicitly,

%e P = 1 - x - x^2 - x^5 - 3*x^6 - 5*x^7 - 13*x^8 - 26*x^9 - 57*x^10 - 120*x^11 - 259*x^12 - 561*x^13 - 1238*x^14 - 2780*x^15 + ...

%e Q = x^2 + x^5 + 3*x^6 + 5*x^7 + 13*x^8 + 26*x^9 + 57*x^10 + 120*x^11 + 259*x^12 + 561*x^13 + 1238*x^14 + 2780*x^15 + ...

%e SPECIFIC VALUES.

%e A(t) = 1 at t = 0.31160833954190659544044203165981407225865730702613...

%e notice that Sum_{n=-oo..+oo} (t^(2*n) - 1)^n = 3/2 - t, which deviates from 1 - t; this is due to the term (t^(2*n) - 1)^n taking on the indeterminate form 0^0 at n = 0.

%e A(t) = 3/4 at t = 0.27771666015004017042369933635782020387857285503045...

%e where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 3/4)^n.

%e A(t) = 2/3 at t = 0.26361225583793268826267306259869479301133547781221...

%e where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 2/3)^n.

%e A(t) = 1/2 at t = 0.22935306806508598431890965331979164445097661571539...

%e where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/2)^n.

%e A(t) = 1/3 at t = 0.18321842757370009004270801439324522647367156844515...

%e where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/3)^n.

%e A(t) = 1/4 at t = 0.15319590401223075722696025027321147967336641684269...

%e where 1-t = Sum_{n=-oo..+oo} (t^(2*n) - 1/4)^n.

%e A(1/4) = 0.59500579234891734482663421150554161897595924474890...

%e where 3/4 = Sum_{n=-oo..+oo} (1/4^(2*n) - A(1/4))^n.

%e A(1/5) = 0.38777623383308495901886663021576078479818829432566...

%e where 4/5 = Sum_{n=-oo..+oo} (1/5^(2*n) - A(1/5))^n.

%o (PARI) {a(n) = my(A=[0,1],Ax=x); for(i=1,n, A=concat(A,0); Ax = Ser(A);

%o A[#A] = polcoef(-(1-x) + sum(n=-#A,#A, (x^(2*n) - Ax)^n ),#A-1) ); A[n+1]}

%o for(n=1,40, print1(a(n),", "))

%K nonn

%O 1,2

%A _Paul D. Hanna_, Nov 14 2024