OFFSET
1,1
COMMENTS
All terms are odd primes. Proof: a(n) cannot be even, because (10^(2*k) + 7^(2*k))/17 is not an integer. If odd number k = x*y, then (10^x + 7^x) and (10^y + 7^y) are nontrivial factors of (10^(x*y) + 7^(x*y)). In conclusion, a(n) must be odd and prime. - Daniel Suteu, Jan 22 2020
The corresponding primes are 79, 6871, 5998666279, 588905817363845479, ...
a(11) > 60000. - Michael S. Branicky, Jul 11 2024
MATHEMATICA
Select[Table[Prime[n], {n, 500}], PrimeQ[(10^#+7^#)/17] &] (* Modified by Jinyuan Wang, Jan 22 2020 *)
PROG
(PARI) forprime(k=3, 10000, if(isprime((10^k+7^k)/17), print1(k, ", ")))
(Magma) [p: p in PrimesUpTo(1000) | IsPrime((10^p+7^p) div 17)]; // Modified by Jinyuan Wang, Jan 22 2020
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Tim Johannes Ohrtmann, Oct 24 2019
STATUS
approved