login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328662
Super pseudoprimes (or superpseudoprimes) to base 3: Fermat pseudoprimes to base 3 all of whose divisors that are larger than 1 are either primes or Fermat pseudoprimes to base 3.
5
91, 121, 671, 703, 949, 1541, 1891, 2701, 3281, 7381, 8401, 12403, 14383, 15203, 16531, 18721, 23521, 24727, 28009, 30857, 31621, 31697, 38503, 44287, 46999, 47197, 49051, 49141, 55261, 55969, 63139, 72041, 74593, 79003, 82513, 83333, 88573, 88831, 90751, 96139
OFFSET
1,1
COMMENTS
The super pseudoprimes to base 2 are the super-Poulet numbers (A050217).
Includes all the semiprimes in A005935. The first terms that are not semiprimes are 7381, 512461, 532171, 1018601, ... (A328663).
Subsequence of A271116. - Bill McEachen, Nov 06 2020
REFERENCES
Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.
LINKS
J. Fehér and P. Kiss, Note on super pseudoprime numbers, Ann. Univ. Sci. Budapest, Eötvös Sect. Math., Vol. 26 (1983), pp. 157-159, entire volume.
B. M. Phong, On super pseudoprimes which are products of three primes, Ann. Univ. Sci. Budapest. Eótvós Sect. Math., Vol. 30 (1987), pp. 125-129, entire volume.
Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers and their generalizations, Applications of Fibonacci numbers, Springer, Dordrecht, 1999, pp. 293-306.
Lawrence Somer, On superpseudoprimes, Mathematica Slovaca, Vol. 54, No. 5 (2004), pp. 443-451.
EXAMPLE
91 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 7 and 13.
7381 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 11 and 61, and the composite numbers 121 and 671 that are Fermat pseudoprimes to base 3.
MATHEMATICA
aQ[n_]:= CompositeQ[n] && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]
CROSSREFS
Subsequence of A005935.
Cf. A050217.
Sequence in context: A005935 A020307 A351336 * A020235 A046427 A179338
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 24 2019
STATUS
approved