login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328665
Least super-Poulet number (A050217) with n distinct prime factors.
1
341, 294409, 9972894583, 1264022137981459, 14054662152215842621
OFFSET
2,1
COMMENTS
a(7) <= 1842158622953082708177091, and a(8) <= 317565023788749598474704753433331761 (from Michon's site).
From Daniel Suteu, Oct 28 2019: (Start)
a(8) <= 192463418472849397730107809253922101,
a(9) <= 1347320741392600160214289343906212762456021,
a(10) <= 70865138168006643427403953978871929070133095474701,
a(11) <= 3363391752747838578311772729701478698952546288306688208857,
a(12) <= 132153369641266990823936945628293401491197666138621036175881960329,
a(13) <= 9105096650335639994239038954861714246150666715328403635257215036295306537. (End)
LINKS
Gérard P. Michon, Super-pseudoprimes to Base a, Numericana, 2005.
Eric Weisstein's World of Mathematics, Super-Poulet Numbers
MATHEMATICA
a[n_] := Module[{k=1}, While[PrimeNu[k] < n || PowerMod[2, k - 1, k] != 1 || Union @ PowerMod[2, Rest[Divisors[k]], k] != {2}, k++]; k]; Array[a, 3, 2]
PROG
(PARI) isok(k, n) = if (omega(k) == n, fordiv(k, d, if(Mod(2, d)^d!=2, return(0))); return(1));
a(n) = my(k=4); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 28 2019
(PARI) isupperbound(n, k) = my(f=factor(k)); omega(f) == n && Mod(2, k)^gcd(vector(#f~, i, f[i, 1]-1)) == 1; \\ Daniel Suteu, Oct 28 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 24 2019
STATUS
approved