The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015371 Gaussian binomial coefficient [ n,9 ] for q=-2. 14
 1, -341, 232903, -105970865, 57881286463, -28735427761313, 14946527496991519, -7593183562134412385, 3902985682508407194271, -1994425683761796076272481, 1022146087305755916943130783, -523082886040328458081329117025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 9,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 9..200 FORMULA a(n) = Product_{i=1..9} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 04 2012 G.f.: -x^9 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016 MATHEMATICA Table[QBinomial[n, 9, -2], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *) PROG (Sage) [gaussian_binomial(n, 9, -2) for n in range(9, 21)] # Zerinvary Lajos, May 25 2009 (Magma) r:=9; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012 CROSSREFS Diagonal k=9 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012 Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012 Sequence in context: A309285 A317556 A006107 * A328665 A163582 A239271 Adjacent sequences: A015368 A015369 A015370 * A015372 A015373 A015374 KEYWORD sign,easy AUTHOR Olivier Gérard STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 15:29 EDT 2024. Contains 375165 sequences. (Running on oeis4.)