login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015383
Gaussian binomial coefficient [ n,9 ] for q=-11.
13
1, -2161452050, 5139062461110267955, -12108543136400139930131294300, 28553261556033167915025118560778623715, -67326679110860591163925513616845073983121067050, 158752877164012182076561255078472431325233637546101158985
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n)=product_{i=1..9} ((-11)^(n-i+1)-1)/((-11)^i-1). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -11], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Magma) r:=9; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A096560 A011581 A200526 * A016872 A016920 A017064
KEYWORD
sign,easy
STATUS
approved