login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015383 Gaussian binomial coefficient [ n,9 ] for q=-11. 13
1, -2161452050, 5139062461110267955, -12108543136400139930131294300, 28553261556033167915025118560778623715, -67326679110860591163925513616845073983121067050, 158752877164012182076561255078472431325233637546101158985 (list; graph; refs; listen; history; text; internal format)
OFFSET

9,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 9..110

FORMULA

a(n)=product_{i=1..9} ((-11)^(n-i+1)-1)/((-11)^i-1). - Vincenzo Librandi, Nov 04 2012

MATHEMATICA

Table[QBinomial[n, 9, -11], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)

PROG

(MAGMA) r:=9; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Sequence in context: A096560 A011581 A200526 * A016872 A016920 A017064

Adjacent sequences:  A015380 A015381 A015382 * A015384 A015385 A015386

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 21:30 EST 2020. Contains 331128 sequences. (Running on oeis4.)