login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015382
Gaussian binomial coefficient [ n,9 ] for q=-10.
13
1, -909090909, 918273645463728191, -917356289173636281073462809, 917448033977125729275307703398447191, -917438859588520669588272049420660231320652809, 917439777028298615325746963688293507886210115870347191
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-10)^(n-i+1)-1)/((-10)^i-1). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -10], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Magma) r:=9; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A189229 A051470 A076135 * A115385 A186805 A122532
KEYWORD
sign,easy
STATUS
approved