login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015375
Gaussian binomial coefficient [ n,9 ] for q=-3.
13
1, -14762, 326882347, -6204226946060, 123644349019377043, -2423717068608654822146, 47771556642163840723529281, -939857780045414554730512966640, 18502040831058043147238631145734166, -364157167636884405223950738210339855212
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(19683*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 9, -3], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -3) for n in range(9, 18)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A089315 A202314 A236667 * A043648 A272128 A035919
KEYWORD
sign,easy
STATUS
approved