login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015378
Gaussian binomial coefficient [ n,9 ] for q=-6.
13
1, -8638025, 89538572808355, -898184256176675135525, 9058617560471271225871839115, -91278255494743382265330154281509525, 919894226814090294609303909820267635374635, -9270381253910297854571803793049953719997957501525
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-6)^(n-i+1)-1)/((-6)^i-1). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
QBinomial[Range[9, 20], 9, -6] (* Harvey P. Dale, Aug 16 2012 *)
Table[QBinomial[n, 9, -6], {n, 9, 18}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -6) for n in range(9, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,9] for q = -2..-13: A015371, A015375, A015376, A015377, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A345616 A346333 A242346 * A337463 A151936 A186824
KEYWORD
sign,easy
STATUS
approved