The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015386 Gaussian binomial coefficient [ n,10 ] for q=-2. 13
 1, 683, 932295, 848699215, 926949282623, 920460637644639, 957498220445101855, 972884994173649887135, 1000137219716325891620511, 1022146087305755916943130783, 1047699739488399814866709052575, 1072321450350081081965428740719775 (list; graph; refs; listen; history; text; internal format)
 OFFSET 10,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 10..200 Index entries for linear recurrences with constant coefficients, signature (683,465806,-106203768, -14443712448,903388560384,28908433932288,-473291569496064, -3563607111499776,16004972290244608,24030926136672256,-36028797018963968). FORMULA a(n) = Product_{i=1..10} ((-2)^(n-i+1)-1)/((-2)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012 G.f.: x^10 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(1024*x-1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 22 2016 MATHEMATICA Table[QBinomial[n, 10, -2], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *) PROG (Sage) [gaussian_binomial(n, 10, -2) for n in range(10, 21)] # Zerinvary Lajos, May 25 2009 (MAGMA) r:=10; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012 CROSSREFS Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402. Sequence in context: A269486 A239272 A076574 * A245393 A252856 A184089 Adjacent sequences:  A015383 A015384 A015385 * A015387 A015388 A015389 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 04:29 EST 2020. Contains 332063 sequences. (Running on oeis4.)