login
A015368
Gaussian binomial coefficient [ n,8 ] for q=-11.
13
1, 196495641, 42471590605551405, 9097327679593690752247605, 1950226184559914695131839252162415, 418045706884240723248900544124967821025015, 89611860518118688087749643530422009144522097477435
OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..8} ((-11)^(n-i+1)-1)/((-11)^i-1). - M. F. Hasler, Nov 03 2012
MATHEMATICA
Table[QBinomial[n, 8, -11], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -11) for n in range(8, 14)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
(PARI) A015368(n, r=8, q=-11)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015369, A015370. - M. F. Hasler, Nov 03 2012
Sequence in context: A209597 A251514 A268844 * A317287 A132205 A358019
KEYWORD
nonn,easy
STATUS
approved