login
A015360
Gaussian binomial coefficient [ n,8 ] for q=-5.
13
1, 325521, 132454820421, 51329529054158421, 20082729571968536374671, 7842306707330337276457324671, 3063597127265150338968694860387171, 1196702310087594273181943625299134137171, 467463036580276600555969910576099571466559046
OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..8} ((-5)^(n-i+1)-1)/((-5)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(5*x+1)*(390625*x-1)*(25*x-1)*(625*x-1)*(78125*x+1)*(125*x+1)*(15625*x-1)*(3125*x+1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 8, -5], {n, 8, 20}] (* Vincenzo Librandi, Nov 03 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -5) for n in range(8, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
(PARI) A015360(n, r=8, q=-5)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Sequence in context: A186836 A237223 A250910 * A209847 A237306 A210387
KEYWORD
nonn,easy
STATUS
approved