login
A015356
Gaussian binomial coefficient [ n,8 ] for q=-2.
14
1, 171, 58311, 13275471, 3624203583, 899790907743, 233988483199263, 59438516325245343, 15275698695588053151, 3902985682508407194271, 1000137219716325891620511, 255910660218571393553843871
OFFSET
8,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (171,29070,-1666680,-56000448,896007168,6826721280,-30482104320,-45902462976,68719476736).
FORMULA
a(n) = Product_{i=1..8} ((-2)^(n-i+1)-1)/((-2)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 8, -2], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
PROG
(Sage) [gaussian_binomial(n, 8, -2) for n in range(8, 20)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
(PARI) A015356(n, r=8, q=-2)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,8] for q=-3..-13: A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Diagonal k=8 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Sequence in context: A145625 A097844 A076573 * A259158 A252139 A252132
KEYWORD
nonn,easy
STATUS
approved