login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097844 Chebyshev polynomials S(n,171). 4
1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 173*y^2 = -4. See A097845 with A098244.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..446

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (171, -1).

FORMULA

a(n)= S(n, 171)=U(n, 171/2)= S(2*n+1, sqrt(173))/sqrt(173) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n)=171*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=171; a(-1):=0.

a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (171+13*sqrt(173))/2 and am := (171-13*sqrt(173))/2 = 1/ap.

G.f.: 1/(1-171*x+x^2).

MATHEMATICA

CoefficientList[Series[1/(1-171x+x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {171, -1}, {1, 171}, 30] (* Harvey P. Dale, Mar 21 2013 *)

CROSSREFS

Sequence in context: A046166 A262113 A145625 * A076573 A015356 A259158

Adjacent sequences:  A097841 A097842 A097843 * A097845 A097846 A097847

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 30 08:33 EDT 2017. Contains 285645 sequences.