login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097844 Chebyshev polynomials S(n,171). 4
1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 173*y^2 = -4. See A097845 with A098244.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..446

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (171, -1).

FORMULA

a(n) = S(n, 171) = U(n, 171/2) = S(2*n+1, sqrt(173))/sqrt(173) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x).

a(n) = 171*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=171.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (171+13*sqrt(173))/2 and am = (171-13*sqrt(173))/2 = 1/ap.

G.f.: 1/(1-171*x+x^2).

MATHEMATICA

CoefficientList[Series[1/(1-171x+x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{171, -1}, {1, 171}, 30] (* Harvey P. Dale, Mar 21 2013 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(1/(1-171*x+x^2)) \\ G. C. Greubel, Jan 14 2019

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-171*x+x^2) )); // G. C. Greubel, Jan 14 2019

(Sage) (1/(1-171*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019

(GAP) a:=[1, 171];; for n in [3..30] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019

CROSSREFS

Cf. A097845, A098244.

Sequence in context: A046166 A262113 A145625 * A076573 A015356 A259158

Adjacent sequences:  A097841 A097842 A097843 * A097845 A097846 A097847

KEYWORD

nonn,easy,changed

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 17:40 EST 2019. Contains 319199 sequences. (Running on oeis4.)