login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097843 First differences of Chebyshev polynomials S(n,123) = A049670(n+1) with Diophantine property. 7
1, 122, 15005, 1845493, 226980634, 27916772489, 3433536035513, 422297015595610, 51939099382224517, 6388086926998019981, 785682752921374233146, 96632590522402032656977, 11885022951502528642575025, 1461761190444288621004071098, 179784741401695997854858170029 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(11*b(n))^2 - 5*(5*a(n))^2 = -4 with b(n)=A097842(n) give all positive solutions of this Pell equation.

LINKS

Colin Barker, Table of n, a(n) for n = 0..478

Tanya Khovanova, Recursive Sequences

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (123,-1).

FORMULA

a(n) = ((-1)^n)*S(2*n, 11*I) with the imaginary unit I and the S(n, x)=U(n, x/2) Chebyshev polynomials.

G.f.: (1-x)/(1-123*x+x^2).

a(n) = S(n, 123) - S(n-1, 123) = T(2*n+1, 5*sqrt(5)/2)/(5*sqrt(5)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.

a(n) = 123*a(n-1)-a(n-2) for n>1 ; a(0)=1, a(1)=122. - Philippe Deléham, Nov 18 2008

a(n) = (1/2)*{[(123/2)-(55/2)*sqrt(5)]^n+[(123/2)+(55/2)*sqrt(5)]^n}+(11/50)*sqrt(5)*{[(123/2)+(55/2 )*sqrt(5)]^n-[(123/2)-(55/2)*sqrt(5)]^n}, with n>=0. - Paolo P. Lava, Dec 12 2008

a(n) = (F(10*(n+1)) - F(10*n))/F(10), with F=A000045 (Fibonacci). F(10*n)/F(10) = A049670. - Wolfdieter Lang, Oct 11 2012

a(n) = 1/5*F(10*n + 5). sum {n >= 1} 1/( a(n) - 1/a(n) ) = 1/11^2. Compare with A001519 and A007805. - Peter Bala, Nov 29 2013

From Peter Bala, Mar 23 2015: (Start)

a(n) = A049666(2*n + 1).

a(n) = ( Fibonacci(10*n + 10 - 2*k) - Fibonacci(10*n + 2*k) )/( Fibonacci(10 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.

a(n) = ( Fibonacci(10*n + 10 - 2*k - 1) + Fibonacci(10*n + 2*k + 1) )/( Fibonacci(10 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.

The aerated sequence (b(n))n>=1 = [1, 0, 122, 0, 15005, 0, 1845493, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -125, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

EXAMPLE

All positive solutions of Pell equation x^2 - 125*y^2 = -4 are (11=11*1,1), (1364=11*124,122), (167761=11*15251,15005), (20633239=11*1875749,1845493), ...

PROG

(PARI) Vec((1-x)/(1-123*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015

CROSSREFS

Sequence in context: A131970 A233096 A121916 * A223385 A241375 A275094

Adjacent sequences:  A097840 A097841 A097842 * A097844 A097845 A097846

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 05:37 EDT 2017. Contains 284036 sequences.