The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097841 First differences of Chebyshev polynomials S(n,83) = A097839(n) with Diophantine property. 5
 1, 82, 6805, 564733, 46866034, 3889316089, 322766369353, 26785719340210, 2222891938868077, 184473245206710181, 15309056460218076946, 1270467212952893676337, 105433469618629957059025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS (9*b(n))^2 - 85*a(n)^2 = -4 with b(n)=A097840(n) give all positive solutions of this Pell equation. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..520 Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Index entries for linear recurrences with constant coefficients, signature (83, -1). Index entries for sequences related to Chebyshev polynomials. FORMULA a(n) = ((-1)^n)*S(2*n, 9*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials. G.f.: (1-x)/(1 - 83*x + x^2). a(n) = S(n, 83) - S(n-1, 83) = T(2*n+1, sqrt(85)/2)/(sqrt(85)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120. a(n) = 83*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=82. - Philippe Deléham, Nov 18 2008 EXAMPLE All positive solutions of Pell equation x^2 - 85*y^2 = -4 are (9=9*1,1), (756=9*84,82), (62739=9*6971,6805), (5206581=9*578509,564733), ... MATHEMATICA CoefficientList[Series[(1-x)/(1-83x+x^2), {x, 0, 20}], x] (* Michael De Vlieger, Feb 08 2017 *) LinearRecurrence[{83, -1}, {1, 82}, 20] (* G. C. Greubel, Jan 13 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1-x)/(1-83*x+x^2)) \\ G. C. Greubel, Jan 13 2019 (Magma) m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-83*x+x^2) )); // G. C. Greubel, Jan 13 2019 (Sage) ((1-x)/(1-83*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 13 2019 (GAP) a:=[1, 82];; for n in [3..20] do a[n]:=83*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 13 2019 CROSSREFS Sequence in context: A252705 A239670 A292423 * A116123 A116142 A054214 Adjacent sequences: A097838 A097839 A097840 * A097842 A097843 A097844 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 04:50 EDT 2024. Contains 375085 sequences. (Running on oeis4.)