The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054214 Numbers n such that n concatenated with n-1 is a square. 22
82, 8242, 9802, 538277, 998002, 77837026, 99980002, 7922547265, 8643251345, 9223797610, 9999800002, 106710893290, 453378226757, 491023832065, 945958034530, 999998000002, 11916002265170, 15790977390245, 24917378001937, 25082758752026, 36315251812570 (list; graph; refs; listen; history; text; internal format)
Also, numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 2.
Also, numbers n such that n concatenated with n-5 gives the product of two numbers which differ by 4.
Every term contains an even number of digits. - Max Alekseyev, May 14 2007
If n=(10^m-1)^2+1 where m is a positive integer then n is in the sequence. Because then n has 2m digits and n concatenated with n-1 is n*10^(2m)+(n-1) = (10^(2m)-10^m+1)^2. for example, taking m=1 we get 82, the first term of the sequence. - Farideh Firoozbakht, Aug 22 2013
As pointed out by Georg Fischer, it is very plausible that all of A054214, A116123, and A116142 contain exactly the same terms. If that is indeed true, then A054214 should be edited to mention the alternative constructions, and the other two sequences declared "dead". However, this needs careful analysis to deal with the possibilities that n, n-2, and n-5 may not all have the same number of digits. - N. J. A. Sloane, Oct 30 2018. Nov 05 2018: Thanks to Giovanni Resta_ (see below), this has now been done. - N. J. A. Sloane, Nov 05 2018
From Giovanni Resta, Nov 05 2018: (Start)
For n and n-5 to have a different digit length, we must have n = 10^k+h with 0<=h<=4.
We want to prove that in this case the concatenation of n and n-5 cannot be of the form m(m+4). The numbers m(m+4) modulo 9 can only be equal to 0, 3, 5, or 6, but it is easy to see that the concatenation of 10^k+h and 10^k+h-5 can be equal to one of these values modulo 9 only if h=0.
Now, the concatenation of 10^k and 10^k-5 is equal to 3 modulo 4 for every k>1, but m(m+4) modulo 4 can only be equal to 0 or 1, so A116123 is indeed equal to this sequence.
Using an identical argument (with mods 9 and 4) we can prove that the concatenation of n and n-2, when n and n-2 have a different number of digits, cannot be equal to m(m+2) and so A116142 is equal to this sequence. (End)
Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
Sequence in context: A097841 A116123 A116142 * A093241 A280361 A280671
Patrick De Geest, Feb 15 2000
More terms from Max Alekseyev, May 14 2007
a(20)-a(21) from Giovanni Resta, Nov 05 2018
Edited by N. J. A. Sloane, Nov 05 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)