login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005935
Pseudoprimes to base 3.
(Formerly M5362)
44
91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161
OFFSET
1,1
COMMENTS
Theorem: If q>3 and both numbers q and (2q-1) are primes then n=q*(2q-1) is a pseudoprime to base 3 (i.e. n is in the sequence). So for n>2, A005382(n)*(2*A005382(n)-1) is in the sequence (see Comments lines for the sequence A122780). 91,703,1891,2701,12403,18721,38503,49141... are such terms. This sequence is a subsequence of A122780. - Farideh Firoozbakht, Sep 13 2006
Composite numbers n such that 3^(n-1) == 1 (mod n).
Theorem (R. Steuerwald, 1948): if n is a pseudoprime to base b and gcd(n,b-1)=1, then (b^n-1)/(b-1) is a pseudoprime to base b. In particular, if n is an odd pseudoprime to base 3, then (3^n-1)/2 is a pseudoprime to base 3. - Thomas Ordowski, Apr 06 2016
Steuerwald's theorem can be strengthened by weakening his assumption as follows: if n is a weak pseudoprime to base b and gcd(n,b-1)=1, then ... - Thomas Ordowski, Feb 23 2021
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 91, p. 33, Ellipses, Paris 2008.
R. K. Guy, Unsolved Problems in Number Theory, A12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..102839 (terms a(1)-a(798) from R. J. Mathar, a(799)-a(1000) from T. D. Noe)
C. Pomerance & N. J. A. Sloane, Correspondence, 1991
Rudolf Steuerwald, Über die Kongruenz a^(n-1) == 1 (mod n), Sitzungsber. math.-naturw. Kl. Bayer. Akad. Wiss. München, 1948, pp. 69-70.
Eric Weisstein's World of Mathematics, Fermat Pseudoprime
MATHEMATICA
base = 3; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
PROG
(PARI) is_A005935(n)={Mod(3, n)^(n-1)==1 & !ispseudoprime(n) & n>1} \\ M. F. Hasler, Jul 19 2012
CROSSREFS
Pseudoprimes to other bases: A001567 (2), A005936 (5), A005937 (6), A005938 (7), A005939 (10).
Subsequence of A122780.
Cf. A005382.
Sequence in context: A236845 A157345 A092125 * A020307 A351336 A328662
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Aug 15 1996
STATUS
approved