login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005936
Pseudoprimes to base 5.
(Formerly M3712)
20
4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 15841, 16297, 17767, 21361, 22791, 23653, 24211, 25327, 25351, 29341, 29539
OFFSET
1,1
COMMENTS
According to Karsten Meyer, 4 should be excluded, following the strict definition in Crandall and Pomerance. - May 16 2006
Theorem: If both numbers q and (2q - 1) are primes (q is in the sequence A005382) then n = q*(2q - 1) is a pseudoprime to base 5 (n is in the sequence) if and only if q is of the form 10k + 1. 1891, 88831, 146611, 218791, 721801, ... are such terms. This sequence is a subsequence of A122782. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 5^(n-1) == 1 (mod n).
REFERENCES
R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 124, p. 43, Ellipses, Paris 2008.
R. K. Guy, Unsolved Problems in Number Theory, A12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..92893 (terms a(1)-a(776) from R. J. Mathar, a(777)-a(1000) from T. D. Noe)
C. Pomerance & N. J. A. Sloane, Correspondence, 1991
Eric Weisstein's World of Mathematics, Fermat Pseudoprime
MATHEMATICA
base = 5; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
Select[Range[30000], CompositeQ[#]&&PowerMod[5, #-1, #]==1&] (* Harvey P. Dale, Jul 21 2023 *)
CROSSREFS
Pseudoprimes to other bases: A001567 (2), A005935 (3), A005937 (6), A005938 (7), A005939 (10).
Sequence in context: A219871 A263550 A232592 * A241648 A197779 A197610
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Aug 15 1996
STATUS
approved