|
|
A241648
|
|
Numbers m such that the GCD of the x's that satisfy sigma(x)=m is 3.
|
|
5
|
|
|
4, 124, 320, 392, 416, 800, 1352, 1520, 2912, 2960, 3536, 3872, 5720, 5936, 6320, 7112, 8216, 9176, 9912, 10472, 11816, 12152, 12896, 13280, 14960, 15176, 16080, 16400, 16536, 18032, 18392, 18560, 19136, 19880, 20000, 21632, 21680, 21920, 22736, 23120, 23816
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..850
|
|
EXAMPLE
|
We have sigma(48)=sigma(75)=124, and gcd(48, 75) = 3, hence 124 is in the sequence.
Likewise, we have sigma(x)=2912 for x=[1116, 1236, 1701, 2007, 2181], with gcd 3.
|
|
MAPLE
|
N:= 10^5: # for terms <= N
V:= Vector(N):
for x from 1 to N do
s:= numtheory:-sigma(x);
if s <= N then
if V[s] = 0 then V[s]:= x
else V[s]:= igcd(V[s], x)
fi
fi
od: select(t -> V[t]=3, [$1..N]); # Robert Israel, Aug 18 2019
|
|
CROSSREFS
|
Cf. A000203, A240667, A241625, A241646, A241647, A241648, A241649, A241650.
Sequence in context: A263550 A232592 A005936 * A197779 A197610 A090082
Adjacent sequences: A241645 A241646 A241647 * A241649 A241650 A241651
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Marcus, Apr 26 2014
|
|
STATUS
|
approved
|
|
|
|