The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241645 Number of partitions p of n such that (number of even numbers in p) > 2*(number of odd numbers in p). 5
 0, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 1, 16, 4, 25, 11, 39, 26, 62, 53, 96, 97, 151, 169, 228, 280, 344, 437, 503, 669, 731, 995, 1034, 1437, 1463, 2042, 2014, 2864, 2780, 3947, 3780, 5397, 5139, 7317, 6913, 9842, 9340, 13183, 12519, 17609, 16859, 23416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Each number in p is counted once, regardless of its multiplicity. LINKS Table of n, a(n) for n=0..53. FORMULA a(n) = A241644(n) - A241643(n) for n >= 0. a(n) + A241641(n) + A241643(n) = A000041(n) for n >= 0. EXAMPLE a(8) counts these 5 partitions: 8, 62, 44, 422, 2222. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1]; Table[Count[f[n], p_ /; s0[p] < 2 s1[p]], {n, 0, z}] (* A241641 *) Table[Count[f[n], p_ /; s0[p] <= 2 s1[p]], {n, 0, z}] (* A241642 *) Table[Count[f[n], p_ /; s0[p] == 2 s1[p]], {n, 0, z}] (* A241643 *) Table[Count[f[n], p_ /; s0[p] >= 2 s1[p]], {n, 0, z}] (* A241644 *) Table[Count[f[n], p_ /; s0[p] > 2 s1[p]], {n, 0, z}] (* A241645 *) CROSSREFS Cf. A241641, A241642, A241643, A241644. Sequence in context: A240145 A240146 A035363 * A266774 A079977 A227093 Adjacent sequences: A241642 A241643 A241644 * A241646 A241647 A241648 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 06:19 EDT 2024. Contains 372703 sequences. (Running on oeis4.)