login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pseudoprimes to base 3.
(Formerly M5362)
44

%I M5362 #70 Feb 09 2022 01:03:11

%S 91,121,286,671,703,949,1105,1541,1729,1891,2465,2665,2701,2821,3281,

%T 3367,3751,4961,5551,6601,7381,8401,8911,10585,11011,12403,14383,

%U 15203,15457,15841,16471,16531,18721,19345,23521,24046,24661,24727,28009,29161

%N Pseudoprimes to base 3.

%C Theorem: If q>3 and both numbers q and (2q-1) are primes then n=q*(2q-1) is a pseudoprime to base 3 (i.e. n is in the sequence). So for n>2, A005382(n)*(2*A005382(n)-1) is in the sequence (see Comments lines for the sequence A122780). 91,703,1891,2701,12403,18721,38503,49141... are such terms. This sequence is a subsequence of A122780. - _Farideh Firoozbakht_, Sep 13 2006

%C Composite numbers n such that 3^(n-1) == 1 (mod n).

%C Theorem (R. Steuerwald, 1948): if n is a pseudoprime to base b and gcd(n,b-1)=1, then (b^n-1)/(b-1) is a pseudoprime to base b. In particular, if n is an odd pseudoprime to base 3, then (3^n-1)/2 is a pseudoprime to base 3. - _Thomas Ordowski_, Apr 06 2016

%C Steuerwald's theorem can be strengthened by weakening his assumption as follows: if n is a weak pseudoprime to base b and gcd(n,b-1)=1, then ... - _Thomas Ordowski_, Feb 23 2021

%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 91, p. 33, Ellipses, Paris 2008.

%D R. K. Guy, Unsolved Problems in Number Theory, A12.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, <a href="/A005935/b005935.txt">Table of n, a(n) for n = 1..102839</a> (terms a(1)-a(798) from R. J. Mathar, a(799)-a(1000) from T. D. Noe)

%H J. Bernheiden, <a href="http://www.mathe-schule.de/download/pdf/Primzahl/PSP.pdf">Pseudoprimes (Text in German)</a>

%H C. Pomerance & N. J. A. Sloane, <a href="/A001567/a001567_4.pdf">Correspondence, 1991</a>

%H F. Richman, <a href="http://math.fau.edu/Richman/carm.htm">Primality testing with Fermat's little theorem</a>

%H Rudolf Steuerwald, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1948_0069-0070.pdf">Über die Kongruenz a^(n-1) == 1 (mod n)</a>, Sitzungsber. math.-naturw. Kl. Bayer. Akad. Wiss. München, 1948, pp. 69-70.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FermatPseudoprime.html">Fermat Pseudoprime</a>

%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>

%t base = 3; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* _T. D. Noe_, Feb 21 2012 *)

%o (PARI) is_A005935(n)={Mod(3,n)^(n-1)==1 & !ispseudoprime(n) & n>1} \\ _M. F. Hasler_, Jul 19 2012

%Y Pseudoprimes to other bases: A001567 (2), A005936 (5), A005937 (6), A005938 (7), A005939 (10).

%Y Subsequence of A122780.

%Y Cf. A005382.

%K nonn

%O 1,1

%A _N. J. A. Sloane_.

%E More terms from _David W. Wilson_, Aug 15 1996