login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of 0..floor((n*6-2)/2) on odd squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.
2

%I #11 Nov 27 2015 05:43:35

%S 1,5,12,78,189,1233,2988,19494,47241,308205,746892,4872798,11808549,

%T 77040153,186696108,1218024054,2951712081,19257264405,46667304972,

%U 304462158318,737821743309,4813622739873,11665145978028,76104577363014

%N Number of permutations of 0..floor((n*6-2)/2) on odd squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.

%C Column 6 of A215870.

%H R. H. Hardin, <a href="/A215866/b215866.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-2) -3*a(n-4).

%F Empirical: g.f.: -x*(x-1)*(2*x^2+6*x+1) / ( 1-16*x^2+3*x^4 ). - _R. J. Mathar_, Nov 27 2015

%e Some solutions for n=4:

%e ..x..0..x..1..x..4....x..0..x..2..x..3....x..0..x..2..x..3....x..0..x..2..x..3

%e ..2..x..3..x..5..x....1..x..4..x..6..x....1..x..4..x..7..x....1..x..4..x..6..x

%e ..x..6..x..8..x.10....x..5..x..8..x..9....x..5..x..8..x..9....x..5..x..7..x..8

%e ..7..x..9..x.11..x....7..x.10..x.11..x....6..x.10..x.11..x....9..x.10..x.11..x

%K nonn

%O 1,2

%A _R. H. Hardin_, Aug 25 2012