login
A321672
Number of chiral pairs of rows of length 5 using up to n colors.
1
0, 0, 12, 108, 480, 1500, 3780, 8232, 16128, 29160, 49500, 79860, 123552, 184548, 267540, 378000, 522240, 707472, 941868, 1234620, 1596000, 2037420, 2571492, 3212088, 3974400, 4875000, 5931900, 7164612, 8594208, 10243380, 12136500
OFFSET
0,3
FORMULA
a(n) = (n^5 - n^3) / 2.
a(n) = (A000584(n) - A000578(n)) / 2.
a(n) = A000584(n) - A168178(n) = A168178(n) - A000578(n).
G.f.: (Sum_{j=1..5} S2(5,j)*j!*x^j/(1-x)^(j+1) - Sum_{j=1..3} S2(3,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x * Sum_{k=1..4} A145883(5,k) * x^k / (1-x)^6.
E.g.f.: (Sum_{k=1..5} S2(5,k)*x^k - Sum_{k=1..3} S2(3,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>5, a(n) = Sum_{j=1..6} -binomial(j-7,j) * a(n-j).
EXAMPLE
For a(0)=0 and a(1)=0, there are no chiral rows using fewer than two colors. For a(2)=12, the chiral pairs are AAAAB-BAAAA, AAABA-ABAAA, AAABB-BBAAA, AABAB-BABAA, AABBA-ABBAA, AABBB-BBBAAA, ABAAB-BAABA, ABABB-BBABA, ABBAB-BABBA, ABBBB-BBBBA, BAABB-BBAAB, and BABBB-BBBAB.
MATHEMATICA
Table[(n^5-n^3)/2, {n, 0, 40}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 12, 108, 480, 1500}, 40]
PROG
(PARI) a(n)=(n^5-n^3)/2 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Row 5 of A293500.
Cf. A000584 (oriented), A168178 (unoriented), A000578 (achiral).
Sequence in context: A230712 A271559 A154671 * A241230 A353047 A037972
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Nov 16 2018
STATUS
approved