login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271978
G_7(n), where G is the Goodstein function defined in A266201.
6
0, 173, 2454, 332147, 37665879, 774841151, 1162263921, 1937434592, 2749609302, 3486784574, 3486786855, 3487116548, 3524450280
OFFSET
3,2
COMMENTS
a(16) is too big to include - see b-file. a(17) = 9.221...*10^2347, a(18) = 2.509...*10^316952. - Pontus von Brömssen, Sep 25 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 3..16
EXAMPLE
Find G_7(7):
G_1(7) = B_2(7)-1= B[2](2^2+2+1)-1 = 3^3+3+1-1 = 30;
G_2(7) = B_3(G_1(7))-1 = B[3](3^3+3)-1 = 4^4+4-1 = 259;
G_3(7) = B_4(G_2(7))-1 = 5^5+3-1 = 3127;
G_4(7) = B_5(G_3(7))-1 = 6^6+2-1 = 46657;
G_5(7) = B_6(G_4(7))-1 = 7^7+1-1 = 823543;
G_6(7) = B_7(G_5(7))-1 = 8^8-1 = 16777215;
G_7(7) = B_8(G_6(7))-1 = 7*9^7+7*9^6+7*9^5+7*9^4+7*9^3+7*9^2+7*9+7-1 = 37665879.
PROG
(Python)
from sympy.ntheory.factor_ import digits
def bump(n, b):
s=digits(n, b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1, b) for i in range(l) if s[i])
def A271978(n):
if n==3: return 0
for i in range(2, 9):
n=bump(n, i)-1
return n # Pontus von Brömssen, Sep 25 2020
CROSSREFS
Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); this sequence: G_7(n); A271979: G_8(n); A271985: G_9(n); A271986: G_10(n); A266201: G_n(n).
Sequence in context: A059243 A142134 A142849 * A224794 A209809 A185707
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Apr 30 2016
EXTENSIONS
a(9) corrected by Pontus von Brömssen, Sep 25 2020
STATUS
approved