login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G_7(n), where G is the Goodstein function defined in A266201.
6

%I #30 Sep 25 2020 10:18:39

%S 0,173,2454,332147,37665879,774841151,1162263921,1937434592,

%T 2749609302,3486784574,3486786855,3487116548,3524450280

%N G_7(n), where G is the Goodstein function defined in A266201.

%C a(16) is too big to include - see b-file. a(17) = 9.221...*10^2347, a(18) = 2.509...*10^316952. - _Pontus von Brömssen_, Sep 25 2020

%H Pontus von Brömssen, <a href="/A271978/b271978.txt">Table of n, a(n) for n = 3..16</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Goodstein&#39;s_theorem">Goodstein's theorem</a>

%e Find G_7(7):

%e G_1(7) = B_2(7)-1= B[2](2^2+2+1)-1 = 3^3+3+1-1 = 30;

%e G_2(7) = B_3(G_1(7))-1 = B[3](3^3+3)-1 = 4^4+4-1 = 259;

%e G_3(7) = B_4(G_2(7))-1 = 5^5+3-1 = 3127;

%e G_4(7) = B_5(G_3(7))-1 = 6^6+2-1 = 46657;

%e G_5(7) = B_6(G_4(7))-1 = 7^7+1-1 = 823543;

%e G_6(7) = B_7(G_5(7))-1 = 8^8-1 = 16777215;

%e G_7(7) = B_8(G_6(7))-1 = 7*9^7+7*9^6+7*9^5+7*9^4+7*9^3+7*9^2+7*9+7-1 = 37665879.

%o (Python)

%o from sympy.ntheory.factor_ import digits

%o def bump(n,b):

%o s=digits(n,b)[1:]

%o l=len(s)

%o return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])

%o def A271978(n):

%o if n==3: return 0

%o for i in range(2,9):

%o n=bump(n,i)-1

%o return n # _Pontus von Brömssen_, Sep 25 2020

%Y Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); this sequence: G_7(n); A271979: G_8(n); A271985: G_9(n); A271986: G_10(n); A266201: G_n(n).

%K nonn

%O 3,2

%A _Natan Arie Consigli_, Apr 30 2016

%E a(9) corrected by _Pontus von Brömssen_, Sep 25 2020