login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271986
G_10(n), where G is the Goodstein function defined in A266201.
6
0, 299, 5643, 1357259, 273624711, 17832200896811, 26748301350411, 44580503598539, 62412976762503, 106993205379371, 106993205384715, 106993206736331, 106993479003783
OFFSET
3,2
COMMENTS
a(17) = 1.926...*10^6103. - Pontus von Brömssen, Sep 25 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 3..16
PROG
(Python)
from sympy.ntheory.factor_ import digits
def bump(n, b):
s=digits(n, b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1, b) for i in range(l) if s[i])
def A271986(n):
if n==3: return 0
for i in range(2, 12):
n=bump(n, i)-1
return n # Pontus von Brömssen, Sep 25 2020
CROSSREFS
Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); A271978: G_7(n); A271979: G_8(n); A271985: G_9(n); this sequence: G_10(n); A266201: G_n(n).
Sequence in context: A341189 A105990 A160484 * A091028 A181646 A262137
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, May 01 2016
EXTENSIONS
Incorrect program and terms removed by Pontus von Brömssen, Sep 25 2020
STATUS
approved