login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271987 g_n(6) where g is the weak Goodstein function defined in A266202. 7
6, 11, 17, 25, 35, 39, 43, 47, 51, 55, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For more info see A266201-A266202.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..381

EXAMPLE

g_1(6) = b_2(6)-1 = b_2(2^2+2)-1 = 3^2+3-1 = 11;

g_2(6) = b_3(3^2+2)-1 = 4^2+2-1 = 17;

g_3(6) = b_4(4^2+1)-1 = 5^2+1-1 = 25;

g_4(6) = b_5(5^2)-1 = 6^2-1 = 35;

g_5(6) = b_6(5*6+5)-1 = 5*7+5-1 = 39;

g_6(6) = b_7(5*7+4)-1 = 5*8+4-1 = 43;

g_7(6) = b_8(5*8+3)-1 = 5*9+3-1 = 47;

g_8(6) = b_9(5*9+2)-1 = 5*10+2-1 = 51;

g_9(6) = b_10( 5*10+1)-1 = 5*11+1-1= 55;

g_10(6) = b_11(5*11)-1 = 5*12-1 = 59;

g_11(6) = b_12(4*12+11)-1 = 4*13+11-1= 62;

g_12(6) = b_13(4*13+10)-1 = 4*14+10-1 = 65;

...

g_381(6) = 0.

MATHEMATICA

g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 6], {n, 0, 64}] (* Michael De Vlieger, May 17 2016 *)

CROSSREFS

Cf. A266205: G_n(6).

Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Sequence in context: A315553 A315554 A126620 * A184550 A109330 A253425

Adjacent sequences:  A271984 A271985 A271986 * A271988 A271989 A271990

KEYWORD

nonn,fini

AUTHOR

Natan Arie Consigli, May 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 10:24 EDT 2020. Contains 337264 sequences. (Running on oeis4.)