login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253425
Lengths of runs of identical terms in A253415.
2
1, 1, 6, 11, 18, 12, 5, 22, 91, 143, 1, 93, 370, 182, 20, 20, 315, 332, 973, 157, 1223, 1807, 325, 4044, 7412, 11211, 4600, 2176, 14848, 4659, 3123, 10852, 1678, 20862, 3348
OFFSET
1,3
MATHEMATICA
c[_] = 0; c[1] = j = 1; u = 2; s = 3; Most@ Tally[#][[All, -1]] &@ Reap[Do[d = Divisors[s]; k = 1; While[c[d[[k]]] > 0, k++]; Set[k, d[[k]]]; Set[c[k], i]; If[k == u, While[c[u] > 0, u++]]; Sow[u]; j = k; s += k, {i, 2, 2^12}]][[-1, -1]] (* Michael De Vlieger, Jan 23 2022 *)
PROG
(Haskell)
import Data.List (group)
a253425 n = a253425_list !! (n-1)
a253425_list = map length $ group a253415_list
(Python)
from itertools import islice
from sympy import divisors
def A253425_gen(): # generator of terms
bset, l, m, s = {1}, 0, 2, 3
while True:
for d in divisors(s):
if d not in bset:
bset.add(d)
if m in bset:
yield l
l = 1
while m in bset:
m += 1
else:
l += 1
s += d
break
A253425_list = list(islice(A253425_gen(), 20)) # Chai Wah Wu, Jan 25 2022
CROSSREFS
Sequence in context: A271987 A184550 A109330 * A099225 A315555 A315556
KEYWORD
nonn,more
AUTHOR
Reinhard Zumkeller, Dec 31 2014
EXTENSIONS
a(14)-a(35) from Michael De Vlieger, Jan 23 2022
STATUS
approved