|
|
A253422
|
|
Number of (n+2)X(6+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 1, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
|
|
1
|
|
|
2389, 15803, 321383, 3500244, 31393746, 118474944, 1042904812, 2922532457, 14945980504, 26001285048, 158392250101, 207801585533, 793557977083, 925795581422, 2519938337350, 2771810154473, 6319718455926, 6746139806975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = a(n-1) +4*a(n-2) -4*a(n-3) -6*a(n-4) +6*a(n-5) +4*a(n-6) -4*a(n-7) -a(n-8) +a(n-9) for n>37.
Empirical for n mod 2 = 0: a(n) = 1205993472*n^4 - (163631318528/3)*n^3 + (2066136710043/2)*n^2 - (28779682481989/3)*n + 36218599097803 for n>28.
Empirical for n mod 2 = 1: a(n) = 1205993472*n^4 - (149159396864/3)*n^3 + (1739269789595/2)*n^2 - (22635744758878/3)*n + (53641243448399/2) for n>28.
|
|
EXAMPLE
|
Some solutions for n=2
..0..3..2..2..2..2..3..4....0..2..2..2..1..2..3..4....0..2..2..3..2..3..3..4
..2..3..1..2..2..3..2..3....3..3..1..2..2..3..2..3....3..3..1..2..3..3..3..3
..2..1..3..3..2..3..3..4....2..1..3..2..1..2..3..4....2..1..3..3..2..2..4..4
..4..2..3..2..3..3..2..3....4..2..2..2..3..3..2..3....4..2..2..2..3..3..3..3
Knight distance matrix for n=2
..0..3..2..3..2..3..4..5
..3..4..1..2..3..4..3..4
..2..1..4..3..2..3..4..5
..5..2..3..2..3..4..3..4
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|