login
A253419
Number of (n+2)X(3+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 1, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
257, 1087, 9985, 44729, 215037, 321383, 1399041, 2045480, 4026041, 4462239, 11268009, 13305698, 20522668, 21502576, 42733327, 46956630, 64753373, 66493567, 115073779, 122276808, 157921612, 160638668, 253728085, 264704952, 327391225
OFFSET
1,1
COMMENTS
Column 3 of A253424.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-4) -4*a(n-5) -6*a(n-8) +6*a(n-9) +4*a(n-12) -4*a(n-13) -a(n-16) +a(n-17) for n>25.
Empirical for n mod 4 = 0: a(n) = (3008/3)*n^4 - (17836/3)*n^3 + (1507261/48)*n^2 - (2120783/12)*n + 386938 for n>8.
Empirical for n mod 4 = 1: a(n) = (3008/3)*n^4 - (14828/3)*n^3 + (1281949/48)*n^2 - (3938669/24)*n + (5831375/16) for n>8.
Empirical for n mod 4 = 2: a(n) = (3008/3)*n^4 - (26860/3)*n^3 + (2607325/48)*n^2 - (3154427/12)*n + (2342671/4) for n>8.
Empirical for n mod 4 = 3: a(n) = (3008/3)*n^4 - (5804/3)*n^3 - (251267/48)*n^2 - (694613/24)*n + (1836387/16) for n>8.
EXAMPLE
Some solutions for n=2
..0..2..2..2..2....0..2..2..3..2....0..3..2..2..1....0..3..2..2..1
..3..3..1..2..2....2..3..1..2..3....2..3..1..2..3....2..3..1..2..2
..1..1..3..2..2....2..1..3..2..2....2..1..3..2..2....2..1..3..2..2
..4..2..2..1..2....4..1..3..2..3....4..2..3..2..2....4..2..3..2..2
Knight distance matrix for n=2
..0..3..2..3..2
..3..4..1..2..3
..2..1..4..3..2
..5..2..3..2..3
CROSSREFS
Sequence in context: A036549 A352983 A031710 * A070184 A054801 A173892
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved