login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267647 a(n) = g_n(4), where g is the weak Goodstein function defined in A266202. 10
4, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For more info see A266201 - A266202.

LINKS

Table of n, a(n) for n=0..21.

EXAMPLE

g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;

g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;

g_3(4) = b_4(2*4+1)-1 = 2*5 + 1-1 = 10;

g_4(4) = b_5(2*5)-1= 2*6 - 1 = 11;

g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;

g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;

g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;

g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;

g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;

g_10(4) = b_11(11)-1 = 12-1 = 11;

g_11(4) = b_12(11)-1 = 11-1 = 10;

g_12(4) = b_13(10)-1 = 10-1 = 9;

g_13(4) = b_14(9)-1 = 9-1 = 8;

g_21(4) = 0;

MATHEMATICA

g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 4], {n, 0, 21}] (* Michael De Vlieger, Mar 18 2016 *)

PROG

(PARI) a(n) = {if (n == 0, return (4)); wn = 4; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; }

vector(22, n, n--; a(n)) \\ Michel Marcus, Apr 03 2016

CROSSREFS

Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A267648: g_5(n); A266203: a(n) = k such that g_k(n)=0;

A056193: G_n(4).

Sequence in context: A087021 A163409 A312828 * A214489 A189207 A127162

Adjacent sequences:  A267644 A267645 A267646 * A267648 A267649 A267650

KEYWORD

nonn,full,fini,easy

AUTHOR

Natan Arie Consigli, Mar 17 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 09:02 EDT 2020. Contains 337264 sequences. (Running on oeis4.)