login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267649
a(0) = a(1) = 2 then a(n) = 4 for n>=2.
0
2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
0,1
COMMENTS
Decimal expansion of 101/450.
Also list of smallest n-composites.
A hyperoperator aggregation b[n]c is n-composite if b,c are positive non-right-identity elements.
The identity elements are:
Hyper-0 (zeration): none.
Hyper-1 (addition): 0.
Hyper-2 (multiplication): 1.
Hyper-3 (exponentiation): 1.
Hyper-n (n>2): 1.
For more information on hyperoperations see A054871.
Essentially the same as A255176, A151798, A123932, A113311, A040002 and A010709. - R. J. Mathar, May 25 2023
Continued fraction expansion of 2 + sqrt(1/5) = 2 + sqrt(5)/5. - Elmo R. Oliveira, Aug 06 2024
FORMULA
a(n) = a[n]b where a,b are the positive smallest non-right-identity elements.
From Elmo R. Oliveira, Aug 06 2024: (Start)
G.f.: 4/(1 - x) - 2*(1 + x).
E.g.f.: 4*exp(x) - 2*(1 + x). (End)
EXAMPLE
a(0) = 2 because 1 is the smallest non-identity element in zeration and 1[0]1=2;
a(1) = 2 because 1 is the smallest non-identity element in addition and 1[1]1=2;
a(2) = 4 because 2 is the smallest non-identity element in multiplication and 2[2]2=4;
a(3) = 4 because 2 is the smallest non-identity element in exponentiation and 2[2]2=4;
a(4) = 4 because 2 is the smallest non-identity element in titration and 2[2]2=4;
Etc.
CROSSREFS
Cf. A000027 (1-composites), A002808 (composites), A267647 (3-composites), A097374 (4-composites).
Sequence in context: A065285 A302437 A179932 * A071805 A063511 A334789
KEYWORD
nonn,easy,cons,less
AUTHOR
Natan Arie Consigli, Jan 19 2016
STATUS
approved