|
| |
|
|
A255176
|
|
a(n) = H_n(2,2) where H_n is the n-th hyperoperator.
|
|
5
|
|
|
|
3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
0,1
|
|
|
COMMENTS
|
See A054871 for definitions and key links.
Remainder of the Euclidean division when 10^(10^n) is divided by 7 (proof by induction for n >= 1) [see reference Julien Freslon & Jérôme Poineau]; example: 10^(10^1) = 1428571428 * 7 + 4. - Bernard Schott, Aug 28 2020
|
|
|
REFERENCES
|
Julien Freslon & Jérôme Poineau, Les 100 exercices-types de mathématiques: MPSI/PCSI/PTSI, EdiScience, 2007, Exercice 11.2, page 242.
|
|
|
LINKS
|
|
|
|
FORMULA
|
|
|
|
EXAMPLE
|
a(0) = H_0(2,2) = 2+1 = 3.
a(1) = H_1(2,2) = 2+2 = 4.
a(2) = H_2(2,2) = 2*2 = 4.
a(3) = H_3(2,2) = 2^2 = 4.
a(n) = H_n(2,2) = H_{n-1}(2,H_n(2,1)) = H_{n-1}(2,2) = 4, for n>1.
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
|
|
|
AUTHOR
|
|
|
|
EXTENSIONS
|
|
|
|
STATUS
|
approved
|
| |
|
|