login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267652 a(n) = 4*a(n - 1) + 4*a(n - 2) for n>1, a(0)=2, a(1)=3. 0
2, 3, 20, 92, 448, 2160, 10432, 50368, 243200, 1174272, 5669888, 27376640, 132186112, 638251008, 3081748480, 14879997952, 71846985728, 346907934720, 1675019681792, 8087710466048, 39050920591360, 188554524229632, 910421779283968, 4395905214054400, 21225307973353472, 102484852749631488 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Generalized Fibonacci sequence.

LINKS

Table of n, a(n) for n=0..25.

Index entries for linear recurrences with constant coefficients, signature (4,4).

FORMULA

G.f.: (2 - 5*x)/(1 - 4*x - 4*x^2).

a(n) = 2^(n-5/2)*((1+4*sqrt(2))*(1-sqrt(2))^n - (1-4*sqrt(2))*(1+sqrt(2))^n).

Lim_{n -> infinity} a(n)/a(n - 1) = 2 + 2*sqrt(2) = 2*A014176 = 4.82842712...

a(n) = 2*A057087(n)-5*A057087(n-1). - R. J. Mathar, Jun 07 2016

MATHEMATICA

Table[2^(n - 5/2) ((1 + 4 Sqrt[2]) (1 - Sqrt[2])^n - (1 - 4 Sqrt[2]) (1 + Sqrt[2])^n), {n, 0, 25}]

RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 4 a[n - 1] + 4 a[n - 2]}, a, {n, 25}] (* Bruno Berselli, Jan 19 2016 *)

LinearRecurrence[{4, 4}, {2, 3}, 20] (* Vincenzo Librandi, Jan 19 2016 *)

PROG

(PARI) Vec((2-5*x)/(1-4*x-4*x^2) + O(x^100)) \\ Altug Alkan, Jan 19 2016

CROSSREFS

Cf. A057087, A084128.

Sequence in context: A066166 A007113 A052804 * A258089 A125763 A042441

Adjacent sequences:  A267649 A267650 A267651 * A267653 A267654 A267655

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Jan 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 12:57 EDT 2019. Contains 327198 sequences. (Running on oeis4.)