login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084128 a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2. 13
1, 2, 12, 56, 272, 1312, 6336, 30592, 147712, 713216, 3443712, 16627712, 80285696, 387653632, 1871757312, 9037643776, 43637604352, 210700992512, 1017354387456, 4912221519872, 23718303629312, 114522100596736, 552961616904192, 2669934870003712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Original name was: Generalized Fibonacci sequence.

Binomial transform of A084058.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,4).

FORMULA

G.f.: (1-2*x)/(1-4*x-4*x^2).

a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.

a(n) = (2 + 2*sqrt(2))^n/2 + (2 - 2*sqrt(2))^n/2.

E.g.f.: exp(2*x)*cosh(2*x*sqrt(2)).

From Johannes W. Meijer, Aug 01 2010: (Start)

Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2).

Lim_{n->infinity} A084128(n)/A057087(n-1) = sqrt(2). (End)

a(n) = Sum_{k=0..n} A201730(n,k)*7^k. - Philippe Deléham, Dec 06 2011

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013

a(n) = 2^(n-1)*A002203(n). - Vladimir Reshetnikov, Oct 07 2016

MAPLE

a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else

4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017

MATHEMATICA

CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)

Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)

LinearRecurrence[{4, 4}, {1, 2}, 30] (* Harvey P. Dale, Mar 01 2018 *)

PROG

(PARI) a(n)=if(n<0, 0, polsym(4+4*x-x^2, n)[n+1]/2)

(Sage) [lucas_number2(n, 4, -4)/2 for n in xrange(0, 23)] # Zerinvary Lajos, May 14 2009

CROSSREFS

Cf. A057087, A001541.

Equals 2^n * A001333(n).

Appears in A086346, A086347 and A086348. - Johannes W. Meijer, Aug 01 2010

Sequence in context: A181298 A247121 A078543 * A044047 A296944 A105487

Adjacent sequences:  A084125 A084126 A084127 * A084129 A084130 A084131

KEYWORD

nonn,easy

AUTHOR

Paul Barry, May 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 19:04 EDT 2018. Contains 315270 sequences. (Running on oeis4.)