login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086348
On a 3 X 3 board, number of n-move routes of chess king ending in the central square.
8
1, 8, 32, 168, 784, 3840, 18432, 89216, 430336, 2078720, 10035200, 48457728, 233967616, 1129709568, 5454692352, 26337640448, 127169265664, 614027755520, 2964787822592, 14315262836736
OFFSET
0,2
COMMENTS
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in the central square m (m = 5).
Inverse binomial transform of A090390 (without the first leading 1).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array T(n,k) counting king walks on an n X n board starting on a square on the diagonal next to a corner:
1,8,32,168,784,3840,18432,89216,430336,2078720,10035200,48457728,233967616,
1,8,47,275,1610,9425,55175,323000,1890875,11069375,64801250,379353125,
1,8,47,318,2013,13140,84555,547722,3537081,22874400,147831399,955690326,
1,8,47,318,2134,14539,99267,679189,4650100,31848677,218164072,1494530576,
1,8,47,318,2134,14880,103920,733712,5187856,36796224,261164848,1855327584,
1,8,47,318,2134,14880,104885,748845,5382180,38880243,281743740,2045995632,
1,8,47,318,2134,14880,104885,751590,5430735,39556080,289541500,2127935700,
1,8,47,318,2134,14880,104885,751590,5438580,39710495,291852880,2156410817,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292340803,2164218694,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292405638,2165752797, (End)
LINKS
Mike Oakes, KingMovesForPrimes.
Zak Seidov, KingMovesForPrimes.
Zak Seidov et al., New puzzle? King moves for primes, digest of 28 messages in primenumbers group, Jul 13 - Jul 23, 2003. [Cached copy]
Sleephound, KingMovesForPrimes.
FORMULA
a(n) = (1/16)(4(-2)^(n+1) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
G.f.: ( 1+6*x+4*x^2 ) / ( (2*x+1)*(-4*x^2-4*x+1) ).
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=8 and a(2)=32.
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). (End)
2*a(n) = 3*A057087(n) + 2*A057087(n-1) - (-2)^n. - R. J. Mathar, May 21 2019
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]: A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
MATHEMATICA
Table[(1/16)(4(-2)^(n+1)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}]
CROSSREFS
Cf. A179597.
Sequence in context: A188121 A045684 A045675 * A129798 A129792 A224664
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jul 17 2003
EXTENSIONS
Offset changed and edited by Johannes W. Meijer, Jul 15 2010
STATUS
approved