login
A090390
Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.
17
1, 1, 9, 49, 289, 1681, 9801, 57121, 332929, 1940449, 11309769, 65918161, 384199201, 2239277041, 13051463049, 76069501249, 443365544449, 2584123765441, 15061377048201, 87784138523761, 511643454094369, 2982076586042449, 17380816062160329, 101302819786919521, 590436102659356801
OFFSET
0,3
COMMENTS
The values of a and b in (a,b,c)*A give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1; the values of c are A000129(2n)
Binomial transform of A086348. - Johannes W. Meijer, Aug 01 2010
All values of a(n) are squares. sqrt(a(n+1)) = A001333(n). The ratio a(n+1)/a(n) converges to 3 + 2*sqrt(2). - Richard R. Forberg, Aug 14 2013
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.
FORMULA
G.f.: (1-4*x-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2
(a, b, c) = (1, 0, 0). Recursively multiply (a, b, c)*( [1, 2, 2], [2, 1, 2], [2, 2, 3] ).
M^n * [ 1 1 1] = [a(n+1) q a(n)], where M = the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. E.g. M^5 * [1 1 1] = [9801 4059 1681] where 9801 = a(6), 1681 = a(5). Similarly, M^n * [1 0 0] generates A079291 (Pell number squares). - Gary W. Adamson, Oct 31 2004
a(n) = (((1+sqrt(2))^(2*n) + (1-sqrt(2))^(2*n)) + 2*(-1)^n)/4 - Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 09 2005
a(n) = (A001541(n) + (-1)^n)/2. - R. J. Mathar, Nov 20 2009
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), with a(0)=1, a(1)=1, a(2)=9. - Harvey P. Dale, May 20 2012
(a(n)) = tesseq(- .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e), apart from initial term. - Creighton Dement, Nov 16 2004
a(n) = A302946(n)/4. - Eric W. Weisstein, Apr 17 2018
E.g.f.: exp(-x)*(1 + exp(4*x)*cosh(2*sqrt(2)*x))/2. - Stefano Spezia, Aug 03 2024
MAPLE
a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 17 2013
MATHEMATICA
CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, May 20 2012 *)
LinearRecurrence[{5, 5, -1}, {1, 1, 9}, 30] (* Harvey P. Dale, May 20 2012 *)
Table[(ChebyshevT[n, 3]+(-1)^n)/2, {n, 0, 30}] (* Eric W. Weisstein, Apr 17 2018 *)
(LucasL[Range[0, 40], 2]/2)^2 (* G. C. Greubel, Aug 21 2022 *)
PROG
(Perl) use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20; $i++) { $p = $p->multiply($a); $p->print(); }
(PARI) a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n), n)
(PARI) a(n)=if(n<0, 0, ([1, 2, 2; 2, 1, 2; 2, 2, 3]^n)[1, 1])
(PARI) Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
(Haskell)
a090390 n = a090390_list !! n
a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $
tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list
-- Reinhard Zumkeller, Aug 17 2013
(Magma) [Evaluate(DicksonFirst(n, -1), 2)^2/4: n in [0..40]]; // G. C. Greubel, Aug 21 2022
(SageMath) [lucas_number2(n, 2, -1)^2/4 for n in (0..40)] # G. C. Greubel, Aug 21 2022
KEYWORD
easy,nonn
AUTHOR
Vim Wenders, Jan 30 2004
STATUS
approved