Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Aug 03 2024 11:18:10
%S 1,1,9,49,289,1681,9801,57121,332929,1940449,11309769,65918161,
%T 384199201,2239277041,13051463049,76069501249,443365544449,
%U 2584123765441,15061377048201,87784138523761,511643454094369,2982076586042449,17380816062160329,101302819786919521,590436102659356801
%N Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.
%C The values of a and b in (a,b,c)*A give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1; the values of c are A000129(2n)
%C Binomial transform of A086348. - _Johannes W. Meijer_, Aug 01 2010
%C All values of a(n) are squares. sqrt(a(n+1)) = A001333(n). The ratio a(n+1)/a(n) converges to 3 + 2*sqrt(2). - _Richard R. Forberg_, Aug 14 2013
%D Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.
%H Harvey P. Dale, <a href="/A090390/b090390.txt">Table of n, a(n) for n = 0..1000</a>
%H Robert Munafo, <a href="http://www.mrob.com/pub/math/seq-floretion.html">Sequences Related to Floretions</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-1).
%F G.f.: (1-4*x-x^2)/((1+x)*(1-6*x+x^2)).
%F a(n) = A001333(n)^2
%F (a, b, c) = (1, 0, 0). Recursively multiply (a, b, c)*( [1, 2, 2], [2, 1, 2], [2, 2, 3] ).
%F M^n * [ 1 1 1] = [a(n+1) q a(n)], where M = the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. E.g. M^5 * [1 1 1] = [9801 4059 1681] where 9801 = a(6), 1681 = a(5). Similarly, M^n * [1 0 0] generates A079291 (Pell number squares). - _Gary W. Adamson_, Oct 31 2004
%F a(n) = (((1+sqrt(2))^(2*n) + (1-sqrt(2))^(2*n)) + 2*(-1)^n)/4 - Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 09 2005
%F a(n) = (A001541(n) + (-1)^n)/2. - _R. J. Mathar_, Nov 20 2009
%F a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), with a(0)=1, a(1)=1, a(2)=9. - _Harvey P. Dale_, May 20 2012
%F (a(n)) = tesseq(- .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e), apart from initial term. - _Creighton Dement_, Nov 16 2004
%F a(n) = A302946(n)/4. - _Eric W. Weisstein_, Apr 17 2018
%F E.g.f.: exp(-x)*(1 + exp(4*x)*cosh(2*sqrt(2)*x))/2. - _Stefano Spezia_, Aug 03 2024
%p a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 17 2013
%t CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)),{x, 0, 30}], x] (* _Harvey P. Dale_, May 20 2012 *)
%t LinearRecurrence[{5,5,-1}, {1,1,9}, 30] (* _Harvey P. Dale_, May 20 2012 *)
%t Table[(ChebyshevT[n,3]+(-1)^n)/2, {n,0,30}] (* _Eric W. Weisstein_, Apr 17 2018 *)
%t (LucasL[Range[0, 40], 2]/2)^2 (* _G. C. Greubel_, Aug 21 2022 *)
%o (Perl) use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20;$i++) { $p = $p->multiply($a); $p->print(); }
%o (PARI) a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n),n)
%o (PARI) a(n)=if(n<0,0,([1,2,2;2,1,2;2,2,3]^n)[1,1])
%o (PARI) Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ _Joerg Arndt_, Aug 16 2013
%o (Haskell)
%o a090390 n = a090390_list !! n
%o a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $
%o tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list
%o -- _Reinhard Zumkeller_, Aug 17 2013
%o (Magma) [Evaluate(DicksonFirst(n,-1),2)^2/4: n in [0..40]]; // _G. C. Greubel_, Aug 21 2022
%o (SageMath) [lucas_number2(n,2,-1)^2/4 for n in (0..40)] # _G. C. Greubel_, Aug 21 2022
%Y Cf. A000129, A001333, A001541, A079291, A086348, A095344, A123270, A302946.
%K easy,nonn
%O 0,3
%A _Vim Wenders_, Jan 30 2004