The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095344 Length of n-th string generated by a Kolakoski(9,1) rule starting with a(1)=1. 8
 1, 1, 9, 9, 49, 81, 281, 601, 1729, 4129, 11049, 27561, 71761, 182001, 469049, 1197049, 3073249, 7861441, 20154441, 51600201, 132217969, 338618769, 867490649, 2221965721, 5691928321, 14579791201, 37347504489, 95666669289, 245056687249, 627723364401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Each string is derived from the previous string using the Kolakoski(9,1) rule and the additional condition: "string begins with 1 if previous string ends with 9 and vice versa". The strings are 1 -> 9 -> 111111111 -> 919191919 -> 11111111191111111119... -> ... and each one contains 1,1,9,9,31,... elements. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,5,4). FORMULA a(1) = a(2) = 1; for n>1, a(n) = a(n-1) + 4*a(n-2) - 4*(-1)^n. G.f.: x*(1 + x + 4*x^2)/((1 + x)*(1 - x - 4*x^2)). - Colin Barker, Mar 25 2012 a(n) = 5*a(n-2) + 4*a(n-3). - Colin Barker, Mar 25 2012 a(n) = 2*(-1)^n + (2^(-1-n)*(-(-7+sqrt(17))*(1+sqrt(17))^n - (1-sqrt(17))^n*(7+sqrt(17))))/sqrt(17). - Colin Barker, Apr 20 2016 a(n) = 2*(-1)^n - 2^n*(Fibonacci(n+1, 1/2) - 2*Fibonacci(n, 1/2)) = 2*(-1)^n - (2/I)^n*(ChebyshevU(n, I/4) - 2*I*ChebyshevU(n-1, I/4)). - G. C. Greubel, Dec 26 2019 MAPLE seq(simplify(2*(-1)^n -(2/I)^n*(ChebyshevU(n, I/4) -2*I*ChebyshevU(n-1, I/4)) ), n = 1..35); # G. C. Greubel, Dec 26 2019 MATHEMATICA Table[2*(-1)^n - 2^n*(Fibonacci[n+1, 1/2] - 2*Fibonacci[n, 1/2]), {n, 35}] (* G. C. Greubel, Dec 26 2019 *) LinearRecurrence[{0, 5, 4}, {1, 1, 9}, 40] (* Harvey P. Dale, Oct 12 2022 *) PROG (Haskell) a095344 n = a095344_list !! (n-1) a095344_list = tail xs where xs = 1 : 1 : 1 : zipWith (-) (map (* 5) \$ zipWith (+) (tail xs) xs) xs -- Reinhard Zumkeller, Aug 16 2013 (PARI) Vec(x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 20 2016 (PARI) vector(35, n, round( 2*(-1)^n - (2/I)^n*(polchebyshev(n, 2, I/4) -2*I*polchebyshev(n-1, 2, I/4)) )) \\ G. C. Greubel, Dec 26 2019 (Magma) R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x+ 4*x^2)/((1+x)*(1-x-4*x^2)) )); // G. C. Greubel, Dec 26 2019 (Sage) def A095344_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) ).list() a=A095344_list(35); a[1:] # G. C. Greubel, Dec 26 2019 (GAP) a:=[1, 1, 9];; for n in [4..35] do a[n]:=5*a[n-2]+4*a[n-3]; od; a; # G. C. Greubel, Dec 26 2019 CROSSREFS Cf. A000002, A066983, A095342, A095343. Cf. A123270, A090390. Sequence in context: A341251 A188276 A152752 * A141635 A014718 A371374 Adjacent sequences: A095341 A095342 A095343 * A095345 A095346 A095347 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Jun 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 18:17 EDT 2024. Contains 374475 sequences. (Running on oeis4.)