|
|
A141635
|
|
Odd nonprimes of the form j/(p(j+1)-p(j)), where p(j)=j-th prime.
|
|
1
|
|
|
1, 1, 1, 9, 9, 49, 91, 95, 35, 115, 117, 69, 143, 147, 159, 87, 25, 95, 195, 69, 215, 75, 57, 243, 249, 129, 265, 267, 135, 279, 35, 153, 39, 105, 161, 323, 329, 69, 117, 363, 387, 105, 423, 429, 217, 435, 437, 147, 225, 153, 93, 243, 245, 249, 125, 515, 87, 525, 527, 177
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The nonprimes are listed in order of increasing j, duplicates retained.
|
|
LINKS
|
Table of n, a(n) for n=1..60.
|
|
EXAMPLE
|
If j=1, then 1/(p(1+1)-p(1))=1/(3-2)=1=a(1).
If j=2, then 2/(p(2+1)-p(2))=2/(5-3)=1=a(2).
If j=4, then 4/(p(4+1)-p(4))=4/(11-7)=1=a(3).
If j=54, then 54/(p(54+1)-p(54))=54/(257-251)=9=a(4).
If j=72, then 72/(p(72+1)-p(72))=72/(367-359)=9=a(5).
If j=98, then 98/(p(98+1)-p(98))=98/(523-521)=49=a(6).
|
|
MAPLE
|
A141635 := proc() local n, p, p1, q ; n := 1 ; p := ithprime(n); p1 := nextprime(p) ; for n from 1 to 2000 do if n mod (p1-p) = 0 then q := n/(p1-p) ; if not isprime(q) and (q mod 2) = 1 then printf("%d, ", q) ; fi; fi; p := p1 ; p1 := nextprime(p1) ; od: RETURN() ; end: A141635() ; # R. J. Mathar, Sep 13 2008
|
|
CROSSREFS
|
Cf. A000040, A141468, A001223.
Sequence in context: A188276 A152752 A095344 * A014718 A339324 A145971
Adjacent sequences: A141632 A141633 A141634 * A141636 A141637 A141638
|
|
KEYWORD
|
nonn,less
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Sep 12 2008
|
|
EXTENSIONS
|
Corrected from 7th entry on by R. J. Mathar, Sep 13 2008
|
|
STATUS
|
approved
|
|
|
|