login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014718
a(n) = (F(n+1)+L(n)+n)^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
1
9, 9, 49, 100, 256, 576, 1369, 3249, 7921, 19600, 49284, 125316, 321489, 829921, 2152089, 5597956, 14592400, 38093584, 99540529, 260273689, 680844649, 1781515264, 4662431524, 12203620900, 31944770361, 83624494041, 218918244769, 573112589764, 1500389809216
OFFSET
0,1
LINKS
FORMULA
G.f.: -(4*x^9-8*x^8+36*x^7-115*x^6+86*x^5+70*x^4-162*x^3+130*x^2-54*x+9) / ((x-1)^3*(x+1)*(x^2-3*x+1)*(x^2+x-1)^2). - Colin Barker, Apr 24 2015
MATHEMATICA
Table[(Fibonacci[n+1]+LucasL[n]+n)^2, {n, 0, 50}] (* or *) LinearRecurrence[ {7, -16, 7, 23, -28, -3, 17, -4, -3, 1}, {9, 9, 49, 100, 256, 576, 1369, 3249, 7921, 19600}, 50] (* Harvey P. Dale, Oct 04 2017 *)
PROG
(PARI) lucas(n) = if(n==0, 2, fibonacci(2*n)/fibonacci(n))
a(n) = (fibonacci(n+1)+lucas(n)+n)^2 \\ Colin Barker, Apr 24 2015
(PARI) Vec(-(4*x^9-8*x^8+36*x^7-115*x^6+86*x^5+70*x^4-162*x^3+130*x^2-54*x+9) / ((x-1)^3*(x+1)*(x^2-3*x+1)*(x^2+x-1)^2) + O(x^100)) \\ Colin Barker, Apr 24 2015
(PARI) a(n)=(fibonacci(n-1)+2*fibonacci(n+1)+n)^2 \\ Charles R Greathouse IV, Apr 24 2015
CROSSREFS
Sequence in context: A152752 A095344 A141635 * A371374 A339324 A145971
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Colin Barker, Apr 24 2015
STATUS
approved