login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014717
a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
1
9, 4, 25, 49, 144, 361, 961, 2500, 6561, 17161, 44944, 117649, 308025, 806404, 2111209, 5527201, 14470416, 37884025, 99181681, 259660996, 679801329, 1779742969, 4659427600, 12198539809, 31936191849, 83610035716, 218893915321, 573071710225, 1500321215376
OFFSET
0,1
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Colin Barker, Apr 23 2015
G.f.: (9 - 14*x - x^2)/ ((1+x)*(1-3*x+x^2)). - Colin Barker, Apr 23 2015
a(n) = A013655(n)^2. - Hartmut F. W. Hoft, Apr 24 2015
a(n) = (1/5)*(22*(-1)^n + 19*Fibonacci(2*n) + 23*Fibonacci(2*n-1)). - Ehren Metcalfe, Mar 26 2016
a(n) = (2^(-1-n)*(11*(-1)^n*2^(2+n) + (23-3*sqrt(5))*(3-sqrt(5))^n + (3+sqrt(5))^n*(23+3*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = 3*a(n-1) - a(n-2) + 22*(-1)^n. - Greg Dresden, May 18 2020
MATHEMATICA
Table[(Fibonacci[n+1] + LucasL[n])^2, {n, 0, 30}] (* Michael De Vlieger, Apr 24 2015 *)
PROG
(PARI) lucas(n) = if(n==0, 2, fibonacci(2*n)/fibonacci(n))
a(n) = (fibonacci(n+1)+lucas(n))^2 \\ Colin Barker, Apr 24 2015
(PARI) Vec( (9-14*x-x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Apr 23 2015
(PARI) a(n) = (2*fibonacci(n+1)+fibonacci(n-1))^2
(Magma) [(Fibonacci(n+1) + Lucas(n))^2: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Colin Barker, Apr 24 2015
STATUS
approved